Integrated classifier hyperplane placement and feature selection
نویسندگان
چکیده
منابع مشابه
Integrated classifier hyperplane placement and feature selection
The process of placing a separating hyperplane for data classification is normally disconnected from the process of selecting the features to use. An approach for feature selection that is conceptually simple but computationally explosive is to simply apply the hyperplane placement process to all possible subsets of features, selecting the smallest set of features that provides reasonable class...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملClassifier-Independent Feature Selection For Two-Stage Feature Selection
The eeectiveness of classiier-independent feature selection is described. The aim is to remove garbage features and to improve the classiication accuracy of all the practical classiiers compared with the situation where all the given features are used. Two algorithms of classiier-independent feature selection and two other conventional classiier-speciic algorithms are compared on three sets of ...
متن کاملK-hyperplane Hinge-Minimax Classifier
We explore a novel approach to upper bound the misclassification error for problems with data comprising a small number of positive samples and a large number of negative samples. We assign the hinge-loss to upper bound the misclassification error of the positive examples and use the minimax risk to upper bound the misclassification error with respect to the worst case distribution that generat...
متن کاملSensor placement for classifier-based leak localization in water distribution networks using hybrid feature selection
This chapter presents a sensor placement method for the classifier-based approaches for leak localization in water distribution networks introduced in the previous chapter. The proposed approach formulates the sensor placement problem as a binary optimization problem. Because of the complexity of the resulting optimization problem, it is solved by means of Genetic Algorithms. In order to reduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2012
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2012.01.148